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Robust results from public good games continue to defy theory. Uncertainty about the distribution of social
preferences can explain first round contributions, but not the variance of contribution patterns in repeated
play. Using a large-scale dataset (50,390 observations from 2,938 participants) we address this gap with two
methodological contributions. First we propose a clustering approach (dynamic time warping) that reflects
the nature of the data: it is two-dimensional, relating choices to experiences; and it allows changes to occur at
idiosyncratic points of time. Second we refrain from constraining dynamic reactions to predictions derived
from static social preferences. Instead, we treat reward function design as an estimation problem, using
Inverse Reinforcement Learning to model behavioral patterns as discrete switches between latent intentions.
This approach reveals that apparently noisy behavior in social dilemmas can be systematically explained as
fluctuations between distinct latent intentions. Our framework successfully accounts for behavioral patterns
previously categorized as noise, providing a new paradigm for understanding dynamic decision-making in
social dilemma games.
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1 Introduction

Standard theory predicts the tragedy of the commons. Everybody maximizes individual profit and
exploits socially-minded choices of others. If community members interact repeatedly, but it is
known when interaction will stop, the gloomy prediction still holds [75]. A robust experimental
literature shows that, in the aggregate, results look different. In a standard symmetric linear public
good game, average contributions typically start considerably above zero, but tend to decline
over time [18, 27, 28, 53, 55, 80, 110]. A substantial theoretical literature rationalizes this result
by introducing some form of social preferences into the utility function [27, 53, 55, 89], whereas
other scholars attribute cooperation to confusion, arguing that participants misinterpret the game
[5, 21, 64]. Efforts to disentangle cooperation driven by social preferences from that motivated by
confusion have not reached a consensus. A widely accepted view posits that observed contributions
stem from a combination of confusion and social preferences [12, 23, 54]. Some work argues that
social preferences do not account for human cooperation at all, but instead confusion does [21].
Very recently, this conclusion was challenged based on structural shortcomings in the experimental
design that led to this conclusion [105].

Thus, the question of whether and how social preferences explain cooperative behavior in social
dilemma games remains unresolved. This in particular holds for the development of contributions
over time. Previous research has attempted to analyze experimentally generated gameplay data by
partitioning it and interpreting the resulting clusters through the lens of established behavioral
types. These approaches typically rely on semi-supervised partitioning that assumes strong priors
about the expected cluster structure. Yet there are always behavioral trajectories that do not fit any
of these types and thus are relegated to substantial "other" categories or noise terms. We argue that
this approach suffers from two limitations:

First, partitioning typically relies on pointwise alignment. While this approach may be suitable for
macroeconomic settings where policy changes affect all firms simultaneously, gameplay data tends
to exhibit behavioral reactions that are affected by the idiosyncratic experiences in the randomly
composed group. We propose using dynamic time warping, a method specifically designed to
handle shifted time series, for partitioning gameplay data.

Second, the interpretation of partitions has been constrained by strong theoretical priors taken
from preference types identified in static settings (e.g., modeling conditional cooperators as partici-
pants who match others’ cooperation levels). Essentially, this literature presupposes knowledge of
players’ reward functions. Given the persistent presence of unexplainable noise or "other" clusters,
we instead argue for explicitly modeling reward functions as an estimation problem. We propose
employing Inverse Reinforcement Learning (IRL), where reward functions are not predefined but
treated as part of the fitting objective.

2 Literature

Social-preference-types. Categorizing human behavior in social dilemma games has long been of
interest to social sciences. Significant parts of the economic literature has focused on identifying
types and assigning these static concepts to individuals in these games. For example, Fischbacher
et al. [56] introduced the strategy method as a tool to classify individuals’ predispositions toward
cooperation in linear public good games.! This method isolates preferences from the potential
influence of learning dynamics or other mechanisms that may emerge during gameplay, focusing on
inherent behavioral tendencies rather than observed actions influenced by the game environment.

Building on this foundational work, several subsequent studies [1, 2, 34, 35, 50, 55-59, 61, 62, 70,
73, 84, 100, 102, 104, 107] have used the strategy method to identify distinct behavioral types in the

IThe strategy method has also been criticized for risking to confuse social preferences with conditional cooperation [20].



Hausladen, Schubert, and Engel 2

very same game. A meta-analysis of these studies [101] found that the latter consistently report
the existence of three types: free riders (who contribute nothing, 19.2%), conditional cooperators
(whose contributions depend on others’ behavior, 61.3 %), and triangle cooperators (10.4%).

Other research has also explored the classification of behavior in public good games but with a
focus on gameplay data rather than data obtained through Fischbacher et al. [56]’s strategy method
[11, 18, 55, 77, 78]. Muller et al. [85] compare both approaches and find that gameplay data often
aligns with the classifications derived from the strategy method.

Analyzing gameplay data presents unique challenges compared to data from the strategy method,
necessitating the use of more advanced analytical approaches. Proposed methods include Bayesian
models [63], finite mixture models [11], clustering techniques [15, 50], Classifier-Lasso (C-Lasso)
[51, 98], and Classification and Regression Trees (CART) [40]. However, no systematic theoretical
comparison has been made between these approaches or the partitions they generate.

A critical point of comparison is how these models handle behaviors that defy standard explana-
tions: Houser et al. [63] introduce a "Confused" type to capture stochastic or seemingly irrational
behaviors that deviate from rational or near-rational strategies. Bardsley and Moffatt [11] employ
tremble terms—random, type-invariant deviations from expected contributions. Importantly, these
trembles diminish with experience, suggesting they represent learning-related noise rather than
persistent irrationality. Fallucchi et al. [51] explicitly model an "others" type to capture behaviors
that do not align with reciprocation or strategic adaptation. Fallucchi et al. [50] identify a "Various"
group, comprising participants whose contribution patterns do not fit within their four primary
categories. A compelling question emerges: What if these "other" clusters stem from limitations in
our methodological approaches rather than just erratic or irrational behavior?

This consideration emerges naturally from a key observation shared across all studies: the
identification of a "downward trend" in public good contributions. This terminology inherently
frames the data as time-series and, importantly, emphasizes trends over specific temporal locations
of features such as peaks, which may vary due to idiosyncratic group dynamics. For instance, when
contribution peaks occur at different times for different individuals (e.g., round 3 versus round
4), the primary interest lies not in these specific timings but rather in identifying the underlying
pattern - such as a mid-game peak - despite slight temporal misalignment. However, none of
the previously discussed methods explicitly addresses temporal misalignment in the data. Signal
processing provides an elegant solution to this challenge: dynamic time warping combined with
barycenter averaging. In this paper we argue that this approach is particularly well-suited for
identifying trends in multivariate time-series data such as PGGs.

The third criterion for comparing partitioning methods is the number of theoretical assump-
tions required for estimation. The Bayesian approach [11] and finite mixture models [11] require
substantial theoretical foundations, incorporating numerous assumptions about underlying distribu-
tions and processes. C-Lasso demands fewer assumptions while still maintaining some theoretical
constraints, whereas hierarchical clustering stands out for its minimal reliance on theoretical
assumptions.

Returning to the earlier question: Could the combination of unaddressed temporal misalignment
and the reliance on numerous assumptions contribute to the emergence of an "other cluster"—a
heterogeneous group that defies straightforward explanation? How might we attempt to better
understand such "atypical” clusters? One promising direction lies in examining methods from the
learning literature. Indeed, assumption-heavy partitioning methods serve as a natural bridge to
learning models because similarly to learning models those methods predefine a certain functional
form of agent’s behavior, similarly to what learning models do explicitely.
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Reinforcement Learning. A multitude of models for thinking and learning in social dilemma
games has been proposed. In particular, three types of learning approaches have been studied:
evolutionary game-theoretic learning, reinforcement learning, and best-response learning (for a
recent review of the literature see [52]).

Specifically, learning in repeated public goods games has commonly been modeled as individual-
level directional learning influenced by social preferences [4, 7, 31, 68, 108]. Recent experimental
findings suggest that social preferences may, however, be unnecessary to explain contributions in
repeated games; instead, individuals appear to learn primarily based on payoffs in the game [19, 22,
24, 25]. Related work posits that social preferences primarily determine first-round contributions,
with subsequent behavior driven purely by payoff-based learning [32].

The way how the human learns from payoff is frequently modeled as Reinforcement Learning
with Loss Aversion [32, 48, 49]. A notable advancement in reinforcement learning is Q-learning
[106], which has found applications in economics and strategic interactions. So far, Q-learning
has been extensively studied in the context of market competition [26, 71] but it has also been
applied to other strategic settings such as the prisoner’s dilemma [38] and PGGs [111]. The latter
two papers rely on agent based models (ABMs), and no attempt so far was made to explain human
behavior in these games with the algorithm.

Modeling a Q-learner requires the definition of a reward function such that Q-values, updated
iteratively via the Bellman equation, can guide actions based on the current state. However, defining
a comprehensive and suitable reward function poses challenges in complex behavioral tasks
[3, 92]. Inverse Reinforcement Learning (IRL) [8, 87] is a popular approach to recover the reward
function inductively from the data. IRL has achieved breakthrough successes in robotics [29, 76]
and autonomous driving [69, 86] and has recently also become a valuable tool for constructing
mathematical models of animal behavior [3, 79, 109]. Traditionally, the animal’s reward function
has been modeled as a smoothly time-varying linear combination [9]. More recently, it has been
suggested that behavior can be represented as a Markov chain characterized by alternating between
discrete intentions [10]. In that spirit, Zhu et al. [112] propose a novel class of Hierarchical Inverse
Q-Learning (HIQL) algorithms, which extend the fixed-reward inverse Q-learning (IQL) framework
[69] to solve multi-intention IRL problems.

Interpreting the "Other" cluster with the help of discrete latent intentions. Capitalizing on both
strands of literature, this paper presents a method for the clean recovery of behavioral patterns and
their matching to underlying latent intentions. First, it explicitly characterizes behavior as switching
between discrete intentions rather than evolving in a continuous manner. This modeling approach
is able to make sense of the seemingly erratic behavior observed in the so-called "other cluster,’
rather than discarding switching behavior as mere noise or irrationality. Hence with the help of
inverse reinforcement learning, there is hope find an explanation for this seemingly inexplicable
behavior. Second, this approach emphasizes the modeling of latent intentions—suggesting that
there is an unobservable construct driving the observed data. This two-level framework offers a
fresh perspective on the field’s efforts to identify behavioral types through pattern recognition.
Traditionally, the focus has been on reconstructing response functions from observed behavior.
Our approach assumes no direct mapping between a single choice function and observed behavior,
and instead aims at recovering an underlying state or thought-process. Recent literature refers to
this as the "inversion problem" [72], where the challenge lies in inferring mental states that are
not directly measurable in behavioral data. The dynamic latent rewards targeted by HIQL can be
understood in this vein and thus correspond to the intentions that Kleinberg et al. [72] identify as
underlying drivers of human behavior.
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This paper. This paper makes several significant contributions to the study of cooperation
and learning in experimental settings. One of our innovations lies in the development of a novel
approach for identifying patterns in gameplay data. Unlike previous methodologies, our partitioning
approach focuses on matching behavioral patterns without requiring exact temporal alignment. This
is accomplished through the application of dynamic time warping (DTW) combined with barycenter
averaging. We benchmark our classification against four established approaches from the literature:
Bayesian modeling, finite mixture models, C-Lasso, and hierarchical clustering. Our comparative
analysis demonstrates that the DTW-based partitioning achieves superior discrimination between
similar contribution trends, resulting in cleaner and more precise pattern identification.

The second contribution of this work is the introduction of a new perspective on the relationship
between behavior and intentions. Drawing from computational neuroscience, we apply hierarchical
inverse Q-learning to estimate latent dimensions of cooperation. This method uncovers significant
variations in latent intentions over time, revealing that these variations differ across clusters of
participants. Notably, clusters previously considered as noise (the "Other" cluster) can now be
reinterpreted in terms of latent intentions.

3 Methods

The code used for this study is available in a public GitHub repository. To maintain anonymization,
we have provided a link to the anonymized version: https://anonymous.4open.science/r/IRL-public-
good-games-1860/README.md.

3.1 The Linear Public Good Game

Our method is designed to uncover patterned heterogeneity and its drivers in repeated, interactive
experiments, making it broadly applicable across various settings. Here, we focus on the specific
case of a linear public good game, which is a widely studied framework in experimental economics.
The game is governed by the following profit function:

I
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where 7;; represents the profit of individual i in period t, e is the fixed endowment allocated to
each individual at the start of each period, and c;; is the contribution made by individual i to the
public project. The term p 25:1 cj: captures the total returns from the public project, where p is
the marginal per capita return (MPCR), satisfying 0 < p < 1.

The contributions of other group members can be represented as the time series of average
contributions excluding individual i:
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where ¢_;, is the average contribution of all other group members at time ¢.

3.2 Clustering Multivariate Time-series

A repeated linear public good produces interactive panel data. The decision program of an individual
participant may react to the experiences she has made with the choices of others. We provide the
algorithm with the exact information that participants receive in the experiment: the development
of the choices over time that the respective participant has made over time {c;}’_,; and the
development of the average choices made by the remaining group members {¢_;,}’_,. Numerous
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methods exist for clustering multivariate time series, each with distinct advantages [see overviews
in 81, 96].

Selecting an appropriate distance measure is crucial for effective clustering of (time series) data.
Two common approaches are the point-wise method and Dynamic Time Warping (DTW). The
point-wise method, typically using Euclidean distance, compares values at corresponding time
points. While this approach is straightforward and computationally efficient, it is overly sensitive
to small misalignment, often leading to inaccurate clustering when sequences are shifted or vary in
length. In contrast, DTW enables flexible, non-linear alignments by warping the time axis. For two
time series, x = {x1,x2,...,x7} andy = {y1,y2,...,yr}, DTW constructs a cost matrix D where
each element D(i, j) represents the cumulative cost of aligning x; with y;. The recurrence relation
for computing D(i, j) is given by

D(i, j) =d(x;,yj) +min{D(i - 1, /), D(i, j — 1), D(i—1,j — 1)},

where the local distance d(x;,y;) is typically defined as the squared difference (x; — y;)*. The
optimal DTW distance is then given by D(T, T), found at the bottom-right corner of the matrix,
which represents the minimal cumulative alignment cost. This mathematical formulation allows
DTW to effectively capture similarities between time series that exhibit temporal distortions or
misalignments [see 14, for further details].

A clustering algorithm then uses these distances to group data into meaningful clusters. We
evaluate three clustering approaches—partition-based, hierarchical, and graph-based—applied to
time series data using DTW as the distance metric. DBA-K-Means represents our partition-based
clustering approach. This method iteratively assigns sequences to clusters while minimizing DTW-
based intra-cluster variance. For hierarchical clustering, we employ an agglomerative approach
with Ward’s linkage criterion. In this approach, we begin with individual sequences and progres-
sively merges clusters to minimize intra-cluster variance. Working with a precomputed DTW
distance matrix, we extract flat clusters by cutting the resulting hierarchical tree at an optimal
level, specifically chosen to yield exactly k clusters. Finally, for graph-based clustering, we adopt
Spectral Clustering, where the DTW-based similarity matrix is used to construct an affinity graph.
The normalized Laplacian of this graph undergoes eigendecomposition, and the data is projected
into a lower-dimensional space, where K-means is applied to derive the final clustering.

The optimal number of clusters k is determined using internal cluster validation indices (CVlIs).
These indices assess clustering quality through different combinations of cluster cohesion and
separation metrics [6]. We employ three standard CVIs compatible with DTW-based clustering:
The Silhouette Score [95], the Davies-Bouldin Index [36], and the Intra-cluster Variance [67]. After
normalizing these indices to a 0-1 range, we compute their average score across candidate cluster
numbers (2-20) to select the best number.

To facilitate the interpretation of the clusters, we calculate centroids via Dynamic Time Warping
Barycenter Averaging (DBA) [91], rather than calculating the arithmetic mean [e.g., 50]. The DTW
centroid ¢ = {cy, ¢y, ..., c7} minimizes the total DTW distance to all series x; in a cluster This
process produces a representative time series that preserves the shape and temporal structure
of cluster behavior. Initializing DBA with an informed starting point was shown to improve
performance [91]. To enhance coherence and visual interpretability, we order UIDs based on their
average contribution and select the median UID as the initial reference.

To ensure a comprehensive comparison, we follow a two-step approach. First, we evaluate four
clustering categories on unidimensional time series, fixing the number of clusters to isolate method
performance. Based on these results, we select the best-performing method. In the second step, we
extend the analysis to two-dimensional time series.
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3.3 Comparing Partitioning Methods Proposed in the Field

Several approaches have been proposed for constructing taxonomies in experimental settings. One
widely used method is Bayesian modeling, which has been applied to public goods games (PGGs)
[63] and probabilistic updating tasks [39] to classify individuals based on their decision-making
behavior. Another common approach involves finite mixture models, which have been used to
categorize individuals in repeated experimental settings such as public goods games [11], beauty
contests [16], lottery choices [30], and private information games [17]. These models assume that
individuals belong to distinct latent types, each following a different behavioral rule. To address
some of the limitations of mixture models, C-Lasso [98] was introduced as an alternative, offering
greater flexibility in identifying latent types. It has been applied to classify behavioral types in
contest experiments [51]. A different strand of the literature employs hierarchical clustering, using
Ward’s method and Manhattan distance, to uncover latent behavioral types in experimental settings
[50]. More details on these methods are provided in A.

A critical limitation of these methods is their inability to handle temporal shifts in behavioral
data. Bayesian models, finite mixture models, and C-Lasso inherently assume that the temporal
structure of the data is aligned across individuals. Consequently, behavioral patterns that appear
at slightly shifted time points may be misclassified as noise or as entirely different behaviors.
Hierarchical clustering can, in principle, be implemented with DTW to allow for temporal shifts.
However, in [50], hierarchical clustering was implemented with Manhattan distance, which relies
on pointwise alignment, making it sensitive to temporal misalignment.

Another major distinction among these methods lies in their assumptions regarding the nature
of behavioral heterogeneity. Hierarchical clustering, as used in Fallucchi et al. [50], does not impose
strong assumptions about the structure or characteristics of the identified clusters. In contrast,
C-Lasso, as applied in Fallucchi et al. [51] to Tullock contests, assumes that heterogeneity primarily
stems from myopic responses to previous-round outcomes, modeled via linear and quadratic effects
of opponents’ efforts and a win dummy. The Bayesian model specified in Houser et al. [63], selects
priors that anchor decision rules in myopic behavior, assuming that, absent strong evidence, choices
depend solely on current payoffs. The finite mixture model specified in Bardsley and Moffatt [11]
estimates posteriors for four predefined types. Notably, these predefined types were derived from
strategy-method data rather than actual gameplay. Some scholars argue that social preferences
influence decisions only in the early rounds, with later behavior better explained by payoff-based
learning [32]. This suggests that partitioning methods structured around fixed preference types
may be suboptimal.

Because these approaches rely on strong prior assumptions, they often introduce noise terms or
uninterpreted clusters to accommodate mismatched data. In contrast, unsupervised methods like
clustering, using only raw game data—individual and group contributions—avoid such assumptions
but yield partitions that may lack interpretability. To address this, we propose a two-step approach:
first, DTB-based clustering identifies behavioral patterns without theoretical priors; second, a
method uncovers latent intentions driving these behaviors.

3.4 Inverse Hierarchical Q-Learning (HIQL)

In a PGG, each agent’s own contribution can be treated as the action a € A, and the observed
contributions of others can be treated as the state s € S. Our setup thus follows published literature
on Q-learning in public good games, where the decision-making of players (actions) is based
on the cooperation information of their neighborhood (interpreted as states) [111]. Following
Zheng et al. [111], we model this setup as a Markov Decision Process (MDP) defined by the tuple
(S, A,P,r,y), where § is the set of all possible states (observed contributions from others), A is
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the set of all actions (own contributions), P(s, a,s’) = Pr(s’ | s, a) is the transition function, r(s, a)
is the (unknown) reward function, y € [0, 1] is the discount factor. A policy 7 (s, a) defines the
probability of choosing action a at state s. Our goal in inverse reinforcement learning is to recover
the unknown reward function r from observed game data (state - action - next state triples).

Inverse Q-learning: The setup assumes that the human follows a Boltzmann (softmax) policy
7g (s, a) proportional to exp(Q(s, a)), where Q(s, a) is the action-value function satisfying:

O(s,a) = r(s,a) +y Z P(s,a,s’) max Q(s’,a"), for all seS, aeA. (3)

s’eS

Given the human game trajectories 9, the maximum-likelihood IRL objective can be solved:
max By_p|logPr(¢ | 7,)], )

subject to 7, (s, a) o< exp(Q(s, a)) and the Bellman equation (3). ¢ is the sequence of state-action
pairs (¢ = {(so, o), - - -» (Sn, @n) }). From this setup, one obtains the following key identity for any
two actions q, b:

Q(s,a) = Q(s,b) + log(ng(s,a)) — log(ne(s,b)). (5)

Hierarchical Extension: If there are K distinct intentions or reward functions ry, ..., rg, each game
trajectory is assumed to be generated by a sequence of decisions where, at each time step, the
behavior is governed by one of these reward functions. The active reward function for each decision
is not directly observed but is assumed to follow an unobserved Markov chain over the intention
index i. Specifically, this chain is characterized by an initial distribution IT = (IIy, ..., IIg) over the
K intentions and a transition matrix A € RX*X whose rows sum to 1, encoding the probabilities of
switching between intentions over time.

The overall model thus treats the observed trajectories as being generated by a hierarchical
process: the lower level involves action selection via a Boltzmann optimal policy under the currently
active reward function, while the higher level governs the evolution of intentions via the Markov
chain. To estimate both the reward functions and the hidden intention dynamics, we maximize the
joint likelihood of the observed trajectories and the latent intention sequence using an Expectation-
Maximization (EM) algorithm.

Fitting Process: We discretize the continuous range [0, 1] of own contributions and others’ contri-
butions into five bins, which we denote as the action set A = { ay, as, a3, as, as} (five bins in [0, 1]).
Similarly, we denote the state set as S = {sy, 2,583,854, 85} (five bins in [0, 1]). Note that the bin-
ning was done to reduce the size of the Q-table. The original action set has on average 11 bins
(in the canonical public good game, participants have an endowment of 10 tokens, and may con-
tribute between 0 and 10 tokens to the joint project). As states are averages, their space is even
larger. As defined earlier, the input for the model are time series trajectories (per participant) of
state-action-next state triplets.

Following Zhu et al. [112], we employ a multi-stage fitting procedure. For all steps, we set the
discount factor to y = 0.99. In the first stage, we run multiple HIQL fits with different numbers of
intentions K = 2, ..., 5 on the whole dataset to obtain a global fit. For each fitting, we perform 10
different initializations and select the best-performing initialization. The initial intention distribution
I1 is initialized uniformly, and the intention transition matrix A is initialized according to Zhu et al.
[112] as A = 0.95 X I + N(0,0.05 X I) where N denotes the normal distribution and I € RK*X s the
identity matrix. This initial A is then normalized so that each row adds up to 1.
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In the second stage of the fitting procedure, we obtain an independent but aligned HIQL fit
for each cluster. We initialize the parameters for each cluster using the best global fit parameters
obtained from all data combined, and then train the algorithm within cluster and for each participant.

Asin Zhu et al. [112], we apply a five-fold cross-validation approach, and additionally implement
a repeated stratified fold split. The stratification is based on the average contribution of individuals.
We bin the clusters into three average contribution bins and ensure that both the training and test
sets are sampled from all bins. Furthermore, we repeat this process ten times within each fold to
obtain stable posterior estimates per participant.

Aligning Latents: A challenge in this setup, as is generally the case in the context of latent
concept estimation, is the fact that latent states can switch across different folds and repeats during
cross-validation. This can lead to inconsistencies in interpretation. To ensure consistent labeling
of the intentions, we first visualize the input data (states and actions) along with the estimated
intentions per participant. We find that while not perfectly aligned, some latents mirror peaks in
actions and thus decided to interpret intention 1 primarily from the viewpoint of the participant’s
action. We then use a peak identifier algorithm [103] to identify peaks in both the action time series
and latent intentions time series. Within each fold and repeat, we assess how frequently a specific
posterior intention aligns with these detected patterns and designate the intention that shows the
highest alignment as intention 1.

Clustering and the Convergence of HIAVIL.. Ashwood et al. [9] employed Inverse Reinforcement
Learning (IRL) without hierarchical extension to characterize animal behavior. They addressed
trajectory variability by clustering (using DBSCAN with Levenshtein distance) to identify trajecto-
ries with similar goal maps and time courses before applying their IRL framework. We adopt their
procedure of partitioning data before estimating latent intentions. This approach offers several
advantages.

Specifically, it supports convergence during the Expectation-Maximization (EM) procedure.
Recall that our model assumes that each trajectory is generated by one of K latent intentions which
are updated via a forward-backward algorithm (the EM algorithm).

When trajectories are pooled across all participants without pre-clustering, the data can exhibit
substantial heterogeneity. This heterogeneity is reflected in the variance of the gradient estimates
when optimizing the reward function in the M-step. For example, consider a parameter update
(such as in the reward function estimation) modeled by a stochastic gradient step:

pUrD = 9(1) _ p (VL(Q“)) + e<f>),

where () represents the noise in the gradient. In a mixed dataset, the variance of this noise,
2 2
o*=E[leD)?].
can be large due to conflicting signals from heterogeneous trajectories. Standard convergence
results then imply that the expected suboptimality after T iterations is bounded as

E[L(0T) - L(6")] < o(%) .

A larger o therefore results in slower convergence.

By clustering the trajectories into groups with similar temporal dynamics (similar patterns of own
contributions and observed contributions from others), we effectively reduce the within-cluster
variance. Denote by 0',% the gradient noise variance in cluster k, where typically 0'13 < o2 The
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corresponding convergence bound for each cluster becomes

E |Le(6(") —Lk(e,’:)] < o(“—\/"_).
T
This reduction in variance accelerates the convergence of the EM procedure within each cluster
while overall enabling a lower bound as Lk(GI(CT) < L(6M), leading to more reliable updates for
the latent intention assignments and the reward functions.

Furthermore, in the E-step of the EM algorithm, the forward-backward (Baum-Welch) procedure
computes the posterior over latent intentions. When trajectories in a cluster share similar dynamics,
the likelihoods p(¢& | z; = i) become more consistent across the cluster. This consistency leads to
more accurate and less noisy estimates of the posteriors Pr(z; = i | £), which in turn improves the
parameter updates in the M-step.

4 Data

Contribution  Experience Contribution  Experience Contribution  Experience Contribution  Experience

max
contribution

Fig. 1. Visualization of the raw data. The y-axis represents participant identifiers (UIDs), while the x-axis
tracks the rounds played. Color intensity indicates the size of contributions, normalized between 0 and 1. The
panels labeled with ‘Contribution, reflects each player’s own contribution. The panels labeled ‘Experience;
represents the average contribution of the other players in the group during the preceding round. Within
subplot-pairs, UIDs are sorted by their average contribution. Notably, there is heterogeneity with respect
to the number of rounds played: The data is divided into subsets with games lasting 7, 10, 20, or 30 rounds.
Furthermore, there exists heterogeneity concerning game parameters. Most notably, one study played a
7-round game (first column) with an exceptionally large group size of 100, resulting in unusually homogeneous
average contributions.
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We use data gathered from standard linear public good games. We collect data from different
game length horizons (7, 10, 20, and 30 rounds). All except the 20-round subsets contain games
without experimental intervention (like a punishment option, or a chat protocol). Furthermore,
we only choose studies, where players observe the average contribution of other team members
after each round. Our dataset comprises 50,390 observations from 2,938 participants. Table S.1
provides details of the original studies and several focal parameters, such as group size, number
of rounds and participants per study. Figure 1 visualizes the raw data as a two-dimensional time
series. The first dimension depicts a participant’s individual contribution (left panels), while the
second dimension represents the participant’s experience, defined as the average contribution of
other group members. In the visualization, yellow indicates the maximum contribution, and dark
blue indicates no contribution. The x-axis tracks the number of rounds played, with separate panels
for games played for 7, 10, 20, or 30 rounds.

The visualization of the raw data reveals several interesting patterns: First, the players’ contribu-
tions (left panels) show a notable downward trend in contributions, represented by progressively
darker shades in the bottom right triangle of each panel. This confirms the well documented phe-
nomenon of gradual decline in cooperative behavior over time in public good games. Furthermore,
the groups’ average contribution in the subset with a 7-round game displays—as opposed to the



Hausladen, Schubert, and Engel 10

other panels—an almost uniform color pattern. This means that average contributions were very
similar across rounds and games. In fact, this is not surprising in light of the fact that this subset
consists exclusively of one study in which the group size was exceptionally large: Each group had
100 members.

Next, we want to check whether our dataset is representative of canonical findings. To that end
we estimate types based on first-round contributions. Although direct classification through the
strategy method would enable immediate comparison with Thoni and Volk [101]’s meta-analysis,
we follow Cotla and Petrie [32]’s approach of using first-round contributions as a reliable proxy?.
Adopting thresholds from Thoni and Volk [101], we categorize normalized contributions ¢ € [0, 1]
as Free Riders: ¢ < 0.1, Conditional Cooperators ¢ € (0.1,0.9), and Full Cooperators: ¢ > 0.9. In
our dataset, Free Riders constitute 11.4% (compared to 19.2% in the meta study), while Conditional
Cooperators represent 50.3% (down from 61.3%). Notably, Full Cooperators show a substantial
increase, comprising 38.3% of participants, in contrast to merely 10.4% in the earlier meta-analysis.
Overall, while variations exist between our dataset and the meta-analysis, the distribution of
contribution types remains consistent. Conditional Cooperators continue to dominate, which
demonstrates that our data is reasonably representative.

5 Results
5.1 DTW-based Clustering Reveals Six Behavioral Clusters

Our analysis aims at partitioning multivariate time series data while fulfilling three key require-
ments: allowing for temporal misalignment between series, minimizing the need for prior assump-
tions, and providing modelling flexibility. We first contrast Dynamic Time Warping (DTW) with
standard distance metrics, demonstrating its superiority in capturing temporally shifted patterns.
We then systematically compare alternative algorithms with DTW to identify the optimal clustering
approach for our behavioral data. Finally, we compare our clustering setup to three methods that
have been proposed in the field.

Pattern-Based Outperforms Point-Wise Alignment. In Figure 2A we illustrate the importance of
allowing for temporal misalignment in time series on clustering outcomes with selected clusters.
For the illustration, we pick three out of six clusters estimated based on the 10-round subset. All
clusters are depicted in Figure S.1. We contrast our preferred method DTW (upper row) with
traditional Euclidean distance (lower row). Results look strikingly different. For all three example
clusters, DTW suggests a pattern where participants start with high contributions and then appear
to switch, after which contributions remain consistently lower. Critically, participants switch to
low contributions at idiosyncratic points in time. This pattern is most distinct in the right most
cluster. In contrast, Euclidean-based methods suggest that this switch occurs for the majority of
participants at approximately the same point in time (lower row of Figure 2 A): round 9 (left-most
cluster), round 4 (middle cluster), and round 3 (right-most cluster).

The upper and the lower row thus seem to tell a diametrically opposed story: each participant
autonomously decides when to give up on cooperation (upper row) vs. clusters of participants
are characterized by prototypical (early or late) switching to defection. To discriminate between
both stories, in Figure 2 B, separately for each subset we report the point in time when the most
pronounced difference in contributions from one period to the next is observed. Irrespective of the
duration of play, the pattern is U-shaped. Switching is most frequent early and late in the game. Yet

2Muller et al. [85] demonstrate strong correspondence between classifications derived from gameplay data and those
obtained from the strategy method. Additionally, Cotla and Petrie [32] establish that first-round contributions in repeated
games closely mirror unconditional contributions in corresponding strategy games, suggesting that initial gameplay
decisions reflect underlying social preferences.
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Fig. 2. Comparative Analysis of Clustering Methods. (A) Comparing clustering results between Dynamic
Time Warping (DTW) and Euclidean distance metrics. The upper row shows DTW clusters and reveals a
pyramid-like shape, indicating that participants are characterized by discernible heterogeneous switching
points. The lower row shows Euclidean-based clustering which misleadingly suggests that all participants
switch at approximately the same point in time. (B) Distribution of switching points across different subsets,
demonstrating a consistent U-shaped pattern where strategy shifts predominantly occur in early and late
rounds. (C) Comparing our method (DTW and spectral) with methods proposed in the literature. Columns
show Hierarchical Clustering [50], Classifier-Lasso [98], and Finite Mixture Models [11]. We always picked
the most heterogeneous cluster from the resulting partition and sorted it according to our cluster assignment,
labeled on the y-axis. The plots show that our method sorts seemingly messy clusters much more cleanly.

in all intermediate rounds, a discernible fraction of participants switch. This observation strongly
speaks against prototypical switching points, and in favour of DTW, which captures the quasi
continuous decrease in contributions over time, i.e. the downward trend that is so characteristic for
public good experiments [47].

Having identified DTW as the most interpretable distance metric, we evaluated its performance
in combination with four clustering algorithms: K-means, DBA K-means, hierarchical clustering,
and spectral clustering. A full comparison of all methods on the 10-round subset can be found
in Figure S.3. Overall, the differences across clustering algorithms are quite small. The clusters
look quite similar, suggesting that the clusters are stable and can more or less be identified by
any method, given that the appropriate distance metric is used. As we do want to make a choice
for this paper, we focus our analysis on one distinct example where the differences between the
methods become most clear, which is the "pyramid cluster" shown in Figure 2 A, top row, most left.
This cluster characterizes a strategy of very high initial contributions followed by a distinct switch
to extremely low contributions. We argue that this strategy is most clearly captured by spectral
clustering. We use this algorithm for further analysis.

To find the optimal number of clusters k we employ three standard cluster evaluation indices
compatible with DTW-based clustering. We compute their average score across candidate cluster
numbers (2-20) (a detailed visualization of all scores k can be found in Figure S.4). While the
statistical optimum occurred at k = 10, this solution produced several clusters with fewer than 30
members, making them impractical for meaningful interpretation. This is why we eventually opted
for six clusters.

DTW-Based Clustering Uncovers Overlooked Subgroups. In the next step, we compare our ap-
proach to existing research. Previous methods for identifying clusters in public good data include
Hierarchical Clustering [50], C-Lasso [98], and finite mixture models [11]. We applied these three
methods to our dataset, with all the resulting clusters visualized in Figure S.5. A subset of the results
are displayed in Figure 2 C. Each method generates a distinct partition. The finite mixture model,
for instance, is predefined to fit four clusters: freerider, altruist, reciprocator, and strategist. The
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freerider and altruist clusters are well-defined by the method. However, they could also have been
easily identified using simple rules (e.g., constant high or low contributions in 90% of rounds). The
remaining data points are distributed between the two other clusters, resulting in quite heteroge-
neous groupings. C-Lasso only converged with five clusters instead of our proposed six, and its
first cluster contained merely three participants. Consequently, the remaining clusters were overly
crowded.. Hierarchical clustering accommodated six clusters but notably failed to identify clear
altruist or freerider clusters.

We argue that our approach (DTW + Spectral Clustering) produces partitions the data more
clearly. To demonstrate this, we selected the most heterogeneous cluster from each method and
sorted its UIDs according to our DTW algorithm’s partition assignments. These results are visualized
in Figure 2 C. This analysis reveals that each cluster from existing methods contains distinct
subgroups that are clearly differentiated by our DTW-based clustering.

For each of the three methods—Fallucchi et al. [50] (left), Su et al. [98] (middle), and Bardsley and
Moffatt [11] (right) in Figure 2C—the largest subgroup corresponds to our Cluster 2 (C2). However,
our clusters C3 and C4 are also identified in a substantial number of participant trajectories.
Interestingly, our cluster C1 appears only in a small number of trajectories in each of these three
subplots, while our C5 is present, only in the leftmost subplot. Notably, our cluster C6 is entirely
absent from all three subplots. The complete clustering results are presented in Figure 3, row 3. For
now, it is only important to highlight that Cluster 1 represents the group with the lowest average
contributions, while Cluster 6 exhibits the highest average contributions. This indicates that the
existing methods successfully distinguish between these two clusters. Notably, these clusters align
with those theorized in the preference-type literature (Freeriders and Full Contributors). Fallucchi
et al. [50] developed their approach primarily using these established preference-types. Therefore,
it is not surprising that their method struggles to identify patterns that have not yet been formally
theorized. Based on this detailed comparison, we conclude that our DTW-based partitioning method
more effectively identifies and differentiates distinct behavioral patterns compared to methods that
have been previously proposed in the literature.

5.2 Intentions Successfully Integrate Actions and States

Our clustering results on the 10-round subset are presented in Figure 3, row 3. Visualizations
of all subsets and their corresponding clusters can be found in Figure S.6. Since our clustering
approach does not impose any theoretical assumptions about participant behavior and is based
solely on game data—specifically, contributions and the information provided to participants (i.e.,
the average contribution of their group members)—the interpretation of these clusters can vary.
The resulting clusters distinguish between actions and states. Consequently, researchers must
heuristically combine these components when attempting to interpret the clusters. HIQL [112]
formalizes this interpretation by applying a transformation that integrates actions and states. It
estimates latent intentions that maximize the likelihood of observing the given game trajectories.
Notably, the input to this function consists exclusively of actions and states, aligning with our
clustering approach. No additional constructs, such as payofls, are required to fit the model. As a
result, the model operates with minimal assumptions about participant behavior.

The first step of fitting the HIQL model is to test which number of latent intentions K best
explains the observed trajectories. We find that as the number of intentions increases, the test
log-likelihood improves steadily, indicating that models with more latent states provide a better fit
to the observed trajectories. This improvement is most pronounced when transitioning from K =1
to K = 2, suggesting that two latent intentions capture key dynamics of the behavioral data while
the increase in the BIC is the smallest at this step (Table 1).
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K ATestLL ABIC CL1 CL2 CL3 CL4 CL5 Clé
1—>2 0.6 75.2
2—3 0.4 88.6 Intention 1—1 0.687 0.525 0.665 0.720 0.724 0.714
3—>4 0.2 101.5 Intention 1—2 0.313 0.475 0.335 0.280 0.276 0.286
4—5 0.2 114.4
Table 1. The best number of latent in-  12Ple 2. Transition probabilities of intentions across clus-

tentions is 2. Evaluating the tradeoff be- ters. The model is fitted with two intentions, where Intention 2
tween the number of latent intentions (K) is defined as 1 - Intention 1. Thus, transition probabilities are
test log-likelihood, and BIC. reported from the perspective of Intention 1 only.

We then fit the HIQL model with two latent intentions across 5 cross-validation folds with 10
repetitions, selecting for each cluster the fold with the highest test set log-likelihood. The results
show that some clusters achieve a better fit than others:

Cluster 6 achieved the best log-likelihood (—0.001), followed by Cluster 5 (—0.091), Cluster 1
(—=0.1), Cluster 3 (—0.447), Cluster 2 (—0.557), and Cluster 4 (—0.637).

The best log likelihoods across folds for all subsets are displayed in Table S.3. These differences
in model fit align with the behavioral patterns observed across clusters. For instance, Cluster
6 comprises participants who consistently contribute nearly their entire endowment across all
periods. The model naturally achieves better fit on these stable, uniform trajectories compared to
e.g. Cluster 2, where participants display frequent switching between different contribution levels.

Intentions Provide a New Basis for the Joint Interpretation of States and Actions. We visualize
individual-level data from the best-performing fold, selecting six representative participants per
cluster to display their latent intentions, states, and actions (Figure 3A, extended in Figure S.9).
While states and actions are reported as normalized values and latent variables as probabilities,
we present them on a unified scale to facilitate interpretation. Given that the second posterior
perfectly mirrors the first, we only plot posterior 1. The visualization uncovers how intentions,
actions, and states relate to each other. The posterior probabilities (intention 1) exhibit distinct
patterns: sometimes tracking states (e.g. in second plot from left), other times closely following
actions (e.g. final rounds of fourth plot), and often synthesizing both signals (e.g. first plot). This
diversity of patterns emerges naturally from HIQL’s optimization process, which identifies intention
trajectories that best explain participant’s actions and their experienced states within each cluster.
HIQL thus provides a crucial advance in behavioral modeling by mathematically formalizing
how individuals integrate states and actions into coherent strategies. Rather than relying on
qualitative interpretations of state-action relationships, we offer a rigorous quantitative foundation
for understanding strategic decision-making in PGG.

Intentions Provide a Unifying Framework for Both Stable and Switching Decision Patterns. We
aggregate individual posteriors within each cluster via Barycenter averaging (Figure 3B, extended
in Figure S.8). While the model fitting within clusters prevents direct comparisons of intentions
across clusters, their temporal evolution patterns remain comparable. This analysis reveals distinct
behavioral signatures across clusters. Clusters 1, 5, and 6 exhibit remarkably stable intentions after
initial transitions, despite the fact that the model allows for continuous intention switching. In
contrast, Cluster 3 shows a decisive intention shift at time step three, while Cluster 4 displays
subtle variations around a declining trend. Most intriguingly, Cluster 2 emerges as a unique
case, characterized by frequent oscillations around equal probabilities for both intentions. The
corresponding heatmap reveals extreme alternating contributions, behavior that would traditionally
have been dismissed as noise. However, our HIQL framework provides a unifying theoretical
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Fig. 3. Clustering Analysis of Action-State Patterns and Intention Dynamics. First row: Representative
actions, states, and estimated intentions for six different UIDs. Second row: Barycentric averages of intentions
for each identified cluster. Third row: Raw data of actions and states for all UIDs within each cluster. Fourth
row: Barycenters of actions and states across all UIDs per cluster.

interpretation: while stable trends in other clusters reflect the consistent dominance of one intention,
the apparent erratic behavior in Cluster 2 represents frequent intention switching when participants
are torn between both. This finding provides the first empirical validation of Houser et al. [63]
"type-switching" hypothesis, while extending it within a formal theoretical framework. Our analysis
thus bridges a crucial gap between observed behavioral heterogeneity and its underlying cognitive
mechanisms.

5.3 Fitted Intentions Can be Interpreted Through A Reinforcement Learning Lens

In the following, we provide a behavioral interpretation of each fitted intention per cluster through
the lens of reinforcement learning (RL). It is important to note that intentions are latent concepts
and must be consistently tied to an objective variable to ensure reliable identification across folds.
We labeled Intention 1 as the one that most closely aligns with participants’ actions in terms of
peak values. As a consequence, in Cluster 1, for example, Intention 1 has a low probability because,
in absolute values, it closely matches the participants’ actions. Conversely, the high-probability
intention represents its inverse—Intention 2.

Free Riders: Risk-Averse Learning Leads to Persistent Low Cooperation. Cluster 1 exhibits consis-
tently low contribution levels across all rounds, which behavioral economics would traditionally
classify as free-riding. However, our analysis reveals a learning pattern: these participants’ inten-
tions initially start at medium-high levels before increasing and stabilizing at a high probability
steady state, closely (inversely) mirroring their experienced outcomes. From a RL perspective,
early negative feedback appears to have quickly consolidated these participants’ low-cooperation
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strategy. The Q-learning perspective suggests these individuals prioritized minimizing risk over
exploring potentially more rewarding cooperative actions.

Volatile Explorers: Active Learning Through Strategic Experimentation. Cluster 2 displays distinc-
tive volatility in both actions and experienced states. The inferred intentions begin at a medium
level and exhibit notable oscillations around this initial value throughout the interaction. While
traditional behavioral analysis might dismiss such patterns as mere noise or irrationality, our RL
framework reveals a more sophisticated underlying process. Drawing on trial-and-error learning
models [49, 93], we can interpret these fluctuations as continuous action-value adjustments driven
by alternating positive and negative rewards. This behavior exemplifies the classic exploration-
exploitation trade-off: participants appear to actively experiment with different contribution levels,
strategically adjusting their behavior in response to the volatile social environment rather than
settling on a fixed strategy.

Threshold Switchers: Strategic Transition from Optimistic Cooperation to Defensive Play. Cluster
3 is characterized by a clear strategic transition in intentions. Action trajectories reveal notable
heterogeneity in switching timing - some participants transition early, others later, but all even-
tually shift from near-maximal to minimal contributions. The estimated latent intentions clearly
signal this strategic pivot through two opposing states: an initially dominant high-contribution
intention gradually gives way to a low-cooperation intention. Through a RL lens, the early high
contributions likely reflect an exploratory phase driven by optimistic reward expectations. However,
as consistently declining states generate negative reinforcement signals, a critical threshold appears
to be breached in the Q-learning dynamics. This triggers a decisive shift from a high-cooperation
exploitation strategy to a risk-minimizing approach characterized by minimal contributions.

Complex Fluctuators: Adaptive Learning with Dynamic State-Action-Intention Relationships. The
aggregated Intention 1 dynamics of Cluster 4 follow a generally decreasing trend punctuated
by local peaks and valleys. Through a RL lens, these patterns reflect sophisticated exploration-
exploitation dynamics and adaptive responses to feedback. Initially high actions and intentions
suggest an exploratory phase motivated by potential cooperative gains. However, declining states
signal diminishing returns from cooperation, triggering recalibration of both actions and intentions.
Drawing on research in adaptive aspiration levels [65, 83] and Q-learning dynamics [106], we
interpret the abrupt transitions as threshold effects: once expected rewards fall below critical
aspiration levels, participants rapidly shift from high-cooperation exploitation to loss-minimizing
strategies.

Consistent Cooperators: Positive Reinforcement Stabilizes High Cooperation. Cluster 6 (note that we
have not yet interpreted Cluster 5) represents cooperators who experience consistently rewarding
states and maintain maximal contributions throughout the game. From an RL perspective, early
positive outcomes appear to trigger a self-reinforcing cycle of continued cooperation. These par-
ticipants, having discovered a high-reward strategy early on, exploit it consistently rather than
exploring alternatives. This interpretation is further supported by the intention dynamics, which
start with high probabilities and quickly stabilize at maximum probability.

Unconditional Cooperators: Resilient High Contributors Despite Limited Reciprocity. Cluster 5 is
characterized by persistently high contributions, despite experiencing medium to low observed
states throughout the game. Behavioral economists have traditionally classified these individuals
as unconditional cooperators, as they continue contributing at near-maximal levels even in the face
of limited reciprocity. From an RL perspective, these individuals appear to possess high aspiration
levels for cooperation [65, 83]. While occasional negative reinforcement signals—manifested as
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Fig. 4. Comparison of behavior and intentions across time horizons. The rows display states/actions
and intentions for four different data subsets corresponding to varying game lengths. The leftmost block
(columns 1-3) shows the raw data of actions and states across all time horizons. The middle block (columns
4-6) presents the barycenter averages of actions and states for each cluster and time horizon. The rightmost
block (columns 7-9) illustrates the barycenter averages of intentions per cluster and time horizon. Only
three clusters per subset are shown—specifically, those that exhibit similar patterns across the subsets. A full
comparison of all clusters can be found in Figures S.6, S.7, and S.8.

transient drops in contributions—could discourage cooperation, participants in this cluster exhibit
low sensitivity to this kind of adverse feedback. Individuals in this cluster maintain cooperation
despite unfavorable conditions, with a latent intention 1 probability of around 0.8. This suggests
a form of "informed cooperation”, where participants recognize that their strategy may not be
immediately rewarded but still persist in their contributions. In contrast, Cluster 6 comprises
individuals, whose cooperation is fully reinforced by favorable social feedback. These individuals
exhibit intention probabilities approaching 1.0, indicative of absolute confidence in their cooperative
strategy.

Our findings reveal a critical behavioral insight: intentions shape decision-making in ways that
actions and states alone cannot explain. While Clusters 1 and 5 appear static and independent of
group contributions from a action-state/ Behavioral Economics perspective, an RL-based interpre-
tation shows that participants do integrate group behavior into their decisions. However, their
predominant intention is so firmly held—far from the neutral switching probability (0.5)—that group
behavior does not alter their choices. This highlights a robust internal strategy, where individuals
acknowledge external information yet remain committed to their chosen course of action.

5.4 Intentions Highlight the Stability of Behavior Across Time Horizons

Our dataset contains experimental games with various round lengths (7, 10, 20, and 30 rounds). Each
subset exhibits idiosyncratic characteristics. In particular, the 7-round subset is unique because
group sizes were extremely large (sometimes up to 100 participants), which tends to stabilize
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the average experiences across rounds. In contrast, the 20-round subset incorporates punishment
mechanisms, further differentiating its dynamics.

The learning model literature has found quite some differences across games with different time
horizons. Empirical and simulation studies within best-reply learning-frameworks [13, 33, 60, 82, 97]
find that longer round lengths tend to support the emergence of cooperative behavior, whereas
shorter games with clear endpoints often lead to increased defection [90, 94]. Also from a RL
perspective, the total number of rounds are expected to strongly influences behavioral dynamics.
In shorter games, there may be insufficient time for agents’ action probabilities (or "attractions”)
to converge to a stable (and possibly cooperative) pattern, resulting in more exploratory or noisy
behavior. Conversely, in longer games, agents have more opportunities to accumulate reinforcement
from successful interactions [65, 66].

Figure 4 illustrates the data subsets across different game lengths (7, 10, 20, and 30 rounds), with
each length shown in a separate row.

The most obvious observation from the comparison of our data across subsets is that both actions
and intentions become, on average, less smooth as the game proceeds. From a RL perspective, this
phenomenon is not surprising: With longer time horizons, agents are afforded more opportunities
to explore alternative actions before settling into a stable strategy [99]. Furthermore, as agents
accumulate more experiences over longer games, the continual updating of their action-value
estimates introduces transient fluctuations. These fluctuations can lead to less smooth trajectories
in both the actions taken and the intentions formed [65, 66].

Another interesting observation is with respect to the clusters with the lowest and highest
cooperation per subset. Recall that we ordered the clusters by their average action: cluster 1
corresponds to the lowest average action (i.e., predominantly defection) and cluster 6 to the highest
(i.e., predominantly cooperation). Interestingly, clusters 1 and 6 show considerable similarity
across subsets. Although the 7-round subset in cluster 6 shows action centroids that hover around
0.5—suggesting less favorable experiences—the overall contribution of cluster 6 is consistent across
all subsets. This implies that fully cooperative behavior is independent of the time horizon. This
adds an important insight to the literature: On average from a best-reply and RL perspective longer
effective horizons promote the emergence and stabilization of cooperative clusters [90, 94]. Our
analysis however identifies a small group of participants whose cooperative tendencies appear
independent of the game’s duration.

The comparison across game horizons is more complex for cluster 1. For example, the 30-round
subset shows pronounced local variations in both actions and intentions. This variability implies
that, especially in longer games, the pattern of defection is not as unambiguous as full cooperation.
The evolving nature of the intentions in cluster 1, 30-round subset suggests that players may be
adapting their behavior as they learn more about the game. From a public policy perspective this
is a very interesting point because it means that freeriding is not as fixed and hard to change as
previously thought. Longer time horizons might be one way to address the problem. Note that the
analysis of intentions not actions leads to this conclusion and therefore demonstrates the added
value of this analysis.

Another notable observation is the threshold switching behavior observed across different round-
lengths. For instance, in the 10-round subset, cluster 3 exhibits a clear threshold switch, with a
sudden transition in players’ actions occurring at a specific round. In the 7-round subset, a similar
phenomenon appears in cluster 4; In contrast, the 30-round subset displays a more complex pattern
for the threshold-switchers (cluster 4), with two distinct abrupt shifts—one occurring close to
midgame and another near the end. Interestingly, the intention remains stably high until a marked
drop in the final two rounds. Thus the intentions of the threshold switchers are quite comparable
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across the different time horizons and similarly suggest that this behavior might not be impacted
by the time horizon of the game.

6 Discussion

Main Insights. Our findings reveal several key insights. First, we demonstrate that pattern-based
alignment (via DTW) outperforms point-wise alignment (via Euklidian distance) in interactive
behavioral trajectory analysis.

When comparing our clustering setup to existing literature, we find that our approach achieves
the clearest partitioning, uncovering behavioral patterns previously overlooked.

We introduce HIQL as the first formal integration of state and action information, establishing a
novel interpretative framework for behavioral trajectories in the economic literature. By modeling
behavior as latent intentions that can switch at each time step, we provide, for the first time, a
unifying theoretical model for interpreting all behavioral clusters in social dilemma games. What
is often dismissed as erratic behavior or noise can instead be understood as frequent intention
switching, particularly when competing intentions have similar adoption probabilities.

Interpreting the fitted intentions through a reinforcement learning lens further refines our
understanding of decision-making processes in public good games. Freeriders and unconditional
cooperators, traditionally seen as acting solely based on social preferences without considering
group behavior, actually integrate group dynamics into their decisions. However, their predominant
intention remains so stable—far from the neutral switching probability (0.5)—that external factors
do not influence their choices.

We also find that some behavioral patterns remain independent of the game’s time horizon. While
longer effective horizons generally promote cooperative clusters, a subset of participants—unconditional
cooperators—exhibit cooperative tendencies irrespective of game duration. This supports the be-
havioral economics classification of their behavior as a strategic type.

Lastly, we observe that low contributors, typically classified as freeriders, exhibit variability in
their probability of choosing low-contribution intentions, with this variability increasing as round
length extends. From a public policy perspective, this suggests that freeriding is not as fixed or
unchangeable as previously thought. Longer time horizons may provide a viable mechanism for
mitigating freeriding behavior. Notably, this conclusion emerges from analyzing intentions rather
than actions, underscoring the added value of our approach.

Low contributors, often labeled freeriders, show increasing variability in low-contribution
intentions as the time horizon increases. This suggests freeriding is more flexible than assumed,
and might be an important new insight for behavioral public policy.

Contributions to Literature. This paper advances several streams of literature:

First, we provide novel insights into the literature on social preference-types in public goods
games (PGG). We identify two critical gaps: (1) the lack of a clear distinction between types estimated
from strategy method versus gameplay data, and (2) the limitations of current methods in detecting
trends and handling temporal misalignments in behavioral patterns.

Second, we extend the learning model literature on social dilemma games by demonstrating the
critical importance of patterned heterogeneity—a phenomenon that has been largely overlooked in
this field, as they do not fit their modeles on pre-clustered data.

Third, we contribute a broader theoretical perspective that bridges multiple research streams
and opens new avenues for future investigation. While psychological research has extensively
documented how humans deviate from their preferences—due to self-control problems or selective
attention—this insight has remained largely implicit in social dilemma game analysis. Current
approaches either infer motivations from observed behavior (e.g., conditional cooperation as a
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generalizable principle) or directly model behavioral response functions through learning models.
Previous attempts to rationalize unexpected behaviors have relied on noise parameters or undefined
"other" clusters. We propose a novel framework that explicitly models these previously categorized
"noise" or "other" clusters as switches in latent intentions. This reconceptualization offers a new
way to understanding behavioral heterogeneity in social dilemma games.

Fourth, we potentially make a modest contribution to the computational neuroscience literature.
While clustering has been applied before fitting inverse reinforcement learning frameworks to
animal behavior, these approaches often appear ad hoc and are not explicitly optimized for the
data at hand. Given that this field also deals with behavioral data, it might benefit from employing
clustering methods specifically suited to capturing temporal shifts in behavior.

Future Work. This study opens several avenues for further research, particularly in modeling
human behavior. Our current approach adapts models originally designed for animal behavior in
non-social, way-finding contexts. In contrast, human behavior involves additional complexities
such as aspirations, emotions, and other affective dynamics. Future work should aim to formally
integrate these elements from the reinforcement learning literature into the modeling framework.

We fit the HIQL model within clusters, aligning with established econometric practices for
uncovering latent structures in panel data, and paralleling computational neuroscience methods
where inverse reinforcement learning models are applied to animal behavior post-clustering [9]. Yet,
the implications of not clustering the data have not been systematically investigated. Future research
could address this gap by examining how model outcomes—such as stability and deviation—are
affected when clustering is omitted.

In addition, following the recommendation of Zhu et al. [112], our models are fitted with y = 0.99
(agents with high foresight). It would be informative to systematically vary y, potentially within
clusters, to study its effect on latent intentions. However, implementing lower y values in the
current HIQL framework introduces instabilities and convergence issues, suggesting that some
form of numerical smoothing may be required.

Furthermore, our current model does not take first-round contributions into account when
estimating latent states. Specifically, the transition probabilities are defined as (state, action, next
state), consistent with standard Q-learning setups. In our linear public goods game (PGG), the first
action is unconditional, so that the first triplet effectively omits the first-round contribution. A more
accurate estimation of latent states might be achieved by explicitly incorporating this unconditional
first-round contribution.

Another important consideration is the initialization of intentions. For instance, in the uncon-
ditional cooperator cluster, intention 1 may be more realistically initialized at a high level and
maintained, rather than beginning at a moderate level and increasing sharply in the first round.
This observation implies that the initialization of the transition matrix could more closely follow the
unconditional contribution pattern rather than relying on random draws from a normal Gaussian
distribution. Future research can explore alternative initialization strategies to stabilize intention
patterns further.

Finally, our analysis required substantial binning of observed behavior—in most cases, halving
the number of bins—to manage the Q-table size and ensure tractability. While binning is a practical
necessity, it may obscure subtle but important variations in behavior. Future simulation studies
could investigate the impact of different binning strategies, allowing for a formal comparison
between models using the original versus a reduced number of bins.
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A Details on Methods

Bayesian Classification Models. Bayesian models, as proposed by Houser et al. [63], formulate the
identification of latent types as a probabilistic inference problem. These models typically assume
a parametric likelihood f(y;; | k) for observations y;; of subject i at time ¢, where 6y are the
parameters associated with type k. A prior distribution 7 (6y) is specified for the parameters, and
the number of types K is either fixed or inferred using a prior 7 (K)—which imposes a strong prior
on the functional form of the contribution or decision rule for each type.

The posterior probability of the type assignments z;, where z; = k indicates that subject i belongs
to type k, is given by:

N T
pz0 V) o [ || [ £ i | 0:)7(0:)m(20)7(K),

i=1 £=1
where Y is the observed data and ® = {60y, ..., 0k }. Bayesian models inherently assume aligned
temporal structures (e.g., t = 1,..., T) and parametric likelihood forms, which limit their flexibility

in handling temporal misalignment.

Finite Mixture Models. Finite mixture models, such as those proposed by Bardsley and Moffatt
[11], assume that the data are generated from a mixture of a predefined number of K distributions,
for instance reciprocators, strategists, altruists, and free-riders. The likelihood function is expressed

as:
K

Flyi) = > mef (yir | 00,
k=1
where 7; are the mixing proportions (ZIk(:l me = 1) and f(y; | Ok) is the parametric density
associated with type k. The parameters {7, 0 } are estimated via maximum likelihood or Bayesian
methods. The number of types K can be determined using criteria such as BIC or AIC. Like Bayesian
models, finite mixture models typically assume aligned temporal structures and parametric forms
for the densities f(y;; | 0x). Thus, they do not recover an underlying latent decision-making
mechanism; instead, the structure driving behavior is pre-specified by the modeler.

Classifier-Lasso (C-Lasso). C-Lasso—proposed by Su et al. [98]—identifies latent types in panel
data through a penalized regression approach. For a model y;; = x;,; + €;;, where f; varies across
individuals but is homogeneous within groups, C-Lasso minimizes the following penalized objective:

1 N T N K
Qo) = 55m D, D (e = i)’ + 2 > 11fi — el

i=1 t=1 i=1 k=1

where ay are group-level parameters, f; are individual-level parameters, and A is a tuning parameter.
The penalty term clusters f; into K groups, automatically determining group membership and the
number of groups. C-Lasso assumes that the time series are aligned across individuals but does
not require parametric likelihoods, making it more flexible than Bayesian or finite mixture models.
Importantly, though C-Lasso partitions the data into latent groups based on the observed behavior,
it does not recover an underlying latent reward function or decision-making mechanism; instead,
it estimates fixed group-specific parameters, with the latent structure being imposed rather than
dynamically inferred.

Hierarchical Clustering. [50] proposes to use Hierarchical Clustering with Ward’s method to
minimize within-cluster variance and using Manhattan distance to measure dissimilarity between
contribution strategies.
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B Details on the Data

Table S.1. Data Overview. Raw data were collected from various published studies on public good behavioral
experiments. The inclusion criteria were: conducting a standard public good game, and providing participants
with the average contribution of other group members after each round.

Study Group Size Periods Participants
Diederich et al., 2016 [37] 10 7 410
Diederich et al., 2016 [37] 40 7 200
Diederich et al., 2016 [37] 100 7 500
Engel et al., 2014 [41] 4 30 228
Engel et al., 2021 [42] 4 10 236
Engel and Kurschilgen, 2013 [43] 4 30 20
Engel and Kurschilgen, 2019 [44] 4 30 288
Engel and Kurschilgen, 2020 [45] 4 30 432
Engel and Rockenbach, 2014 [46] 4 10 102
Engel and Rockenbach, 2024 [47] 3 20 30
Engel and Rockenbach, 2024 [47] 5 20 252
Kosfeld et al., 2009 [74] 4 20 216
Nikiforakis and Normann, 2008 [88] 4 10 24

Total 2938
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C Additional Clustering Methods Comparisons

GMM Agglom. DTW

KMeans

10 1 10 1 10
Period Period Period Period Period Period

Fig. S.1. Comparison of Distance Metrics. DTW-based clustering (top row) identifies temporal patterns,
exemplified by the pyramid shape in cluster 2. In contrast, Euclidean-based methods (bottom row) detect
point-wise differences, shown by e.g. the binary splits in agglomerative cluster 3 and k-means cluster 4.
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Fig. S.2. Distribution of optimal threshold points across rounds. Each subplot represents the percentage
of players who showed their most dramatic change in contribution level at that round. There, we plot
heatmaps of contributions, subsetted into subplots regarding the round in which the switching process
happens. Interestingly, the visualization suggests that a partitioning based on this point of strategy switch
is initially appealing, as is the interpretation suggested in the second row of Figure 2 A. However, these
interpretations lose explanatory power when viewed in light of the distribution of switching points shown in
Figure 2 B.

Cl 1 Cl. 2 Cl. 3 Cl. 4 Cl.5 Cl.6

n=109 n=54 n=42 n=82

KMeans

DBA-KMeans

Hierarchical

Spectral

Period Period Period Period

Fig. S.3. Comparison of clustering algorithms in combination with DTW. Specifically, we examine
combinations of DTW with K-means, hierarchical clustering, and spectral clustering. For this analysis, we
have fixed the number of clusters to six, focusing on the data subset with 10 rounds. Our results indicate that
spectral clustering most distinctly separates the data.
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Cluster Evaluation Scores
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Fig. S.4. Finding the optimal number of clusters k. Normalized cluster evaluation scores (Silhouette,
Davies-Bouldin, and Intra-cluster Variance) for different numbers of clusters. The vertical grey line marks the
selected solution of 6 clusters, which balances evaluation metrics and ensures meaningful cluster sizes (100

members).
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Fig. S.5. Comparison of partitioning methods. (A) Dynamic Time Warping (DTW) and Spectral Clustering,
(B) Hierarchical Clustering [50], (C) Classifier-Lasso [98], and (D) Finite Mixture Models [11]. We argue that

DTW provides the sharpest separation of temporal patterns in our panel data.
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D Full Sample Plots
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Fig. S.6. Raw data of actions and states per cluster. The y-axis represents different UIDs (displayed in the
subplot title). The left side of each subplot represents the participants’ contributions (actions), while the right
side shows the average contribution of their group members (state).
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Fig. S.7. Centroids of actions and states per cluster and data subset.
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Fig. S.8. Barycenters of posterior probabilities (intentions) per cluster. Subplots show participant
estimated posterior probability for intention 1 (in black) and 2 (in green), with intention 2 computed as
1 — intention 1).
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Fig. S.9. Posterior intentions and contributions for sampled UIDs across clusters. Subfigures show
results for one stratified-sampled UID per cluster, based on average contribution. X-axis represents rounds;
Y-axis displays normalized values. Subplots include participant states, actions, and estimated posterior
probability for intention 1 (with intention 2 computed as 1 — intention 1).
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E Transition Probabilities and Log Likelihoods for All Subsets

Table S.2. Transition probabilities for all subsets.

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster 5 Cluster 6
Max Period Transition

7 Intention 1—1 0.718 0.614 0.623 0.738 0.696 0.722
Intention 1—2 0.282 0.386 0.377 0.262 0.304 0.278
10 Intention 1—1 0.687 0.525 0.665 0.720 0.724 0.714
Intention 1—2 0.313 0.475 0.335 0.280 0.276 0.286
20 Intention 1—1 0.719 0.641 0.742 0.579 0.837 0.740
Intention 1—2 0.281 0.359 0.258 0.421 0.163 0.260
30 Intention 1—1 0.667 0.607 0.641 0.713 0.710 0.675
Intention 1—2 0.333 0.393 0.359 0.287 0.290 0.325

Table S.3. Best Log Likelihood across 5 x 10 Folds by Subset and Cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Max Period

7 -0.073 -0.641 -0.677 -0.328 -0.506 -0.016
10 -0.100 -0.557 -0.447 -0.637 -0.091 -0.001
20 -0.201 -0.220 -0.603 -0.262 -0.101 -0.025

30 -0.317 -0.754 -0.635 -0.432 -0.461 -0.036
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